Classification des symptomes causeés par
le watermelon mosaic virus (WMV) sur

melon par Deep Learning: conception d’'un
modele léger et déploiement mobile

Naima Dambrine?*
Matthieu Deloget?
Jacques Lagnel?
Lucie Tamisier3

CORRESPONDANCE
naima.dambrine@inrae.fr; lucie.tamisier@inrae.fr

RESUME

Ce projet explore l'application du Deep Learning a la classification automatique des symptémes
causes par le watermelon mosaic virus (WMV) sur melon, une culture fortement affectée par ce
virus. Un modele leger de classification a éte concu et entrainé a partir d'images de feuilles, puis
converti au format TFLite pour un déploiement embarqué sur smartphone. Une attention particu-
liere a été portée a la préparation des données, a la réduction du bruit visuel et a la compatibilite
mobile. L'application mobile obtenue permet une prédiction rapide et localisée des stades de la
maladie, ouvrant la voie a une aide au diagnostic en conditions expéerimentales.
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ABSTRACT

This project explores the application of Deep Learning to the automatic classification of symptoms
caused by the watermelon mosaic virus (WMV) on melon, a crop heavily affected by this virus.
A lightweight classification model was designed and trained on leaf images, then converted to
TFLite format for on-board deployment on smartphones. Particular attention was paid to data
preparation, visual noise reduction and mobile compatibility. The resulting mobile application
enables rapid, localised prediction of disease stages, paving the way for diagnostic support in
experimental conditions.
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Introduction

Les virus des plantes représentent une menace majeure en agri-
culture, compromettant a la fois les rendements et la qualité des
récoltes. Le watermelon mosaic virus (WMV; genre Potyvirus, famille
Potyviridae) est un des principaux virus infectant les cucurbitacées
comme le melon, la pastéque, la courgette ou le concombre. Présent
dans le monde entier, le WMV est particulierement répandu dans
les zones tempérées et méditerranéennes (Desbiez, 2020).

En l'absence de méthodes curatives, I'utilisation de variétés de
plantes génétiquement résistantes constitue I'un des principaux
moyens de lutte contre les virus (Kang et al., 2005). Le développe-
ment de ces variétés nécessite de phénotyper plusieurs centaines
de génotypes de plante afin d'évaluer leur niveau de résistance a
I'agent pathogéne, puis d'exploiter ces données a laide de mo-
deles génétiques permettant d'identifier les génes de résistance
impliqués (Korte & Farlow, 2013).

Chez le pathosysteme melon-WMV, une méthode de phénotypage
couramment employée consiste a noter la sévérité des symptomes
foliaires selon une échelle de notation standardisée (Diaz-Penddn
etal., 2005; Gilbert et al.,, 1994 ; Lopez-Martin et al., 2024 ; Palo-
mares-Rius et al., 2011). Les symptomes peuvent aller de faibles
mosaiques a des déformations foliaires séveres selon les souches
virales et les génotypes de plante (Lecoq & Desbiez, 2012). Ce phé-
notypage visuel reste cependant subjectif et dépend fortement de
I'expertise de l'observateur, ce qui peut introduire des variations
entre évaluateurs. De plus, ce travail de phénotypage demeure une
étape longue et fastidieuse dans les programmes de recherche et
de sélection variétale. Le développement d'outils permettant de
standardiser et d'automatiser la reconnaissance et la quantifica-
tion des symptdmes ouvre donc des perspectives majeures pour
I'amélioration génétique des cucurbitacées et la gestion durable
des maladies virales.

Dans ce contexte, nous avons cherché a développer un outil d'ana-
lyse automatisée des symptomes du WMV, en nous appuyant sur
des approches de vision par ordinateur et d'intelligence artificielle
(Ferentinos, 2018 ; Mohanty et al., 2016). Lobjectif est de conce-
voir un modele léger, embarquable sur smartphone, capable de
classifier 'intensité des symptomes a partir de photos de feuilles
asymptomatiques ou infectées, dans le cadre du phénotypage
de masse.

Lessor de I'intelligence artificielle (IA) et des méthodes d'analyse
d'image offre de nouvelles perspectives pour automatiser et stan-
dardiser ces observations. Lanalyse par Deep Learning, en particu-

lier, permet de classifier automatiquement les symptomes a partir
de simples photographies de feuilles (Barbedo, 2019).

Une étude exploratoire a été menée pour évaluer cette approche
dans le contexte du WMV, en sappuyant sur la constitution d'un
jeu d'images annotées et 'expérimentation de plusieurs architec-
tures de classification, jusqu'au déploiement du modeéle retenu
dans une application mobile dédiée (Mrisho et al., 2020). Nous
en présentons ici les principales étapes : préparation et traitement
du jeu de données, entrainement et évaluation du modeéle retenu,
puis intégration dans un outil léger, simple d'usage et adapté aux
besoins du phénotypage en conditions expérimentales.

Préparation et traitement du jeu de
données

Constitution du jeu de données

Le jeu de données a été obtenu en semant 130 génotypes de
melon (Cucumis melo) représentatifs de la diversité mondiale de
I'espéce et présentant différents niveaux de résistance au WMV, avec
6 plantes par génotype. Une semaine aprés semis, les plantes ont
été inoculées mécaniquement avec la souche LLTA. Un mois aprés
inoculation, une feuille par plante a été prélevée pour réaliser la
prise de photo. Lexpérience a été effectuée en conditions contr6lées
en chambre de culture (photopériode : 16h lumiere/8h obscurité,
températures: 24°Cjour/18 °C nuit).

Les photographies ont été réalisées dans des conditions maitrisées
(fond noir, distance fixe grace a un trépied) afin d'assurer I'nomo-
généité desimages et de limiter les biais d'analyse. Les images ont
ensuite été classées manuellement selon une échelle en quatre
stades, du stade 0 feuille asymptomatique au stade 3: forte dé-
formation foliaire (Figure 1).

En vue de leur utilisation dans un modéle d'apprentissage automa-
tique, lesimages ont ensuite fait I'objet d'un prétraitement struc-
turé comprenant les étapes suivantes : un nettoyage des images
(recadrage, redimensionnement, suppression des doublons ou
images floues), une gestion des déséquilibres entre classes (par
échantillonnage et équilibrage), ainsi qu'une augmentation des
données via des transformations simples (rotations, symétries,
variations de luminosité).

Lesimages brutes, d'une résolution initiale de 4496x 3000 pixels,
ont fait l'objet d'un prétraitement systématique (Figure 2) visant a
améliorer la qualité du signal et a normaliser les entrées du modele.

Stade 0
Feuille asymptomatique

Stade 1
Mosaique légére

Stade 2 Stade 3
Déformations et/ou fortes Forte déformation
mosaiques

Figure 1. Exemples d'images de feuilles de melon représentatives de I'intensité des symptdmes causés par le WMV

pour chacun des 4 stades (0 a 3). Prétraitement des images
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Figure 2. Prétraitement : détection et sélection de la feuille dominante, fond
uniforme, redimensionnement pour I'entrainement

Une procédure automatique a permis de détecter la feuille domi-
nante en exploitant son contraste avec le fond noir et la proportion
de pixels verts. Le contour présentant le meilleur ratio de pixels
verts dans I'espace HSV était sélectionné, puis utilisé pour extraire
la feuille sous forme de masque binaire.

Le fond était ensuite remplacé par une couleur uniforme (gris
moyen), et I'image recadrée autour de la feuille. Chaque image
était finalement redimensionnée a 640 640 pixels sans distorsion,
via une mise a I'échelle conservant le rapport hauteur/largeur, suivie
d'un padding homogeéne sur fond gris.

Equilibrage du jeu de données

Le jeu de données ainsi obtenu présente un déséquilibre notable
entre classes, en particulier pour le stade 3 (formes sévéres). Pour
anticiper les biais d'apprentissage, les données ont été réparties de
maniére stratifiée en deux ensembles: 80 % pour I'entrainement
et 20% pour la validation, tout en conservant une distribution re-
présentative des stades dans les ensembles originaux (Figure 3).

Augmentation de données ciblée

Afin d'atténuer le déséquilibre observé, une stratégie d'augmen-
tation de données ciblée a été mise en ceuvre pour la classe 3.

A chaque image ont été appliquées des transformations contrdlées:
retournement horizontal, zoom, translation, rotation Iégére, et
flou modéré.

Cette démarche a permis d'augmenter la diversité intra-classe sans
introduire dartéfacts visuels.

Les matrices de confusion ont été établies a partir des prédictions
du modele de classification YOLOv8m-cls (Ultralytics) sur I'ensemble
de validation: chaque image est affectée a la classe la plus probable
(argmax), puis la matrice est normalisée par classe vraie afin d'expri-
mer des proportions. Compte tenu du faible effectif de validation
pour la classe 3 (n = 14), nous rapportons en complément une
analyse sur une validation enrichie (169 images originales + 28
variantes transformées), interprétée comme un test de sensibilité
a des transformations légéres. Les matrices de confusion corres-
pondantes sont présentées en Figure 4. Les résultats suggerent
une amélioration de la détection du stade 3, au prix d'une baisse
du score top-1 global (0.905 sans augmentation vs 0.878 avec
augmentation).

Entrainement et évaluation du modele

Cette étude vise avant tout a illustrer une démarche de classification
supervisée et un pipeline d'entrainement reproductible dans un
contexte de données limitées. En I'absence d'un volume suffisant
pour constituer un ensemble de testindépendant, les performances
sont rapportées sur un ensemble de validation, complétées par
une analyse par classe (matrices de confusion) et une évaluation
de sensibilité aux transformations lorsque pertinent.

Plusieurs modeéles de classification visuelle ont été évalués: YOLO-
v11n-cls, YOLOv8n-cls, et YOLOvBm-cls. Le modele YOLOv8m-cls a
été retenu pour son bon compromis entre robustesse et rapidité
d'inférence.

Distribution des images par classe
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Figure 3. Distribution des classes dans le jeu de données complet, puis dans les ensembles d’entrainement et de validation

apres répartition stratifiée (80 %/ 20 %).

Le déséquilibre du stade 3, motive I'exploration d'une augmentation ciblée.
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Figure 4. Matrices de confusion normalisées obtenues avec un réseau de classification YOLOv8m-cls (Ultralytics), avant
et aprés augmentation ciblée de la classe 3 appliquée a I'ensemble d'entrainement.
L'évaluation est réalisée sur une validation enrichie utilisée comme test de sensibilité aux transformations.

L'entrainement a été réalisé avec la bibliothéque Ultralytics, en
mode classification supervisée, sur des images 640 x 640 pixels
avec les paramétres suivants:

e Nombre d'époques: 50
e Batchsize: 16

e Optimiseur: Adam avec un taux d'apprentissage initial
de 0.001

e Scheduler du taux d'apprentissage : automatique
(avec early stopping si stagnation)

e Patience: 10

e Augmentations : désactivées initialement, car les transforma-
tions par défaut d'Ultralytics introduisaient des artefacts visuels
peu cohérents avec les cas réels

e Classes: 4 niveaux de gravité (de I'absence de symptomes
jusqu’a la forte déformation de la feuille)

e Répartition : 80 % entrainement, 20 % validation (aléatoire
mais stratifiée)

Une expérimentation ultérieure avec la bibliothéque Albumen-
tations a permis d'identifier des augmentations plus adaptées,
notamment pour la classe 3, sous-représentée. En appliquant
des transformations réalistes (rotation légere, flou modéré, etc),
il a été possible daugmenter la diversité sans nuire a la lisibilité
des symptdmes.

Sur la validation originale, le modeéle atteint une précision top-1
de 0.905. Laugmentation ciblée de la classe 3 vise a améliorer la
reconnaissance des formes séveres et est analysée via les matrices
de confusion (Figure 4); sur I'évaluation enrichie, le score top-1
global est de 0.878. Ces tendances devront étre confirmées sur
un jeu de données de validation plus large.

Intégration dans une application mobile

Conversion et déploiement mobile

Le modele final a été converti au format TFLite pour permettre son
exécution directe sur smartphone. Deux optimisations complé-
mentaires ont été appliquées:

e Quantification float16 lors de I'export TFLite (half=True), ré-
duisant la taille du modéle sans perte notable de précision.

e Chargement avec délégation GPU (GpuDelegateV2) assurant
une inférence fluide::

- moins de 700 ms sur smartphone récent (moins d'un an);
— moins de 2700 ms sur un appareil ancien (6 a 7 ans).

Développement de I'application mobile

Lapplication mobile, développée avec Flutter pour une compa-
tibilité Android/iOS, permet a I'utilisateur de prendre une photo
ou d'en sélectionner une dans la galerie, d'envoyer I'image au
modeéle embarqué, puis d'afficher le stade estimé accompagné
d'une probabilité (Figure 5).

Linférence se fait hors-ligne, garantissant un usage autonome
sans connexion réseau.

Linterface est minimaliste et accessible a un public non spécialiste.
Elle sert également de pré-test avant une phase 2 axée sur la dé-
tection en temps réel sur le terrain.

3 ~ -

®

Application de recherche INRAE

Cette appication a 4o développde cant le
cadre des travas de recherche de MNBAF s
Ia mosaigue du malon

Aucune donnde personnelie n'est colectée Les
mages restent sur Fappared ou 300t utiltbel
log slement ponr I'anatyie

CHasuficatien des siades
- Stade 0 aulun Symptiee

- Stade 1 massgues

- Stade 2 - GHAGIMALonT #LOu TOLIGES
- Stade 3 forte déformatan

Stade 0 : aucun symptéme (contiance

99.5%)

Figure 5. Apercu de I'interface mobile (iPhone)
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Résultats

Précision de classification

Le modeéle YOLOv8m-cls atteint une précision top-1 de 0.905 sur
I'ensemble de validation, avec un bon équilibre entre les différentes
classes (Tableau 1).

Tableau 1. Récapitulatif des classes / métriques

Classe Label dl\!;)ﬂl:;l;rees Préciszoo/:; R
0 asymptomatique 212 92.0
1 mosaique faible 259 85.3
2 mosaique forte 309 84.2
3 forte déformation 71 91.1

Laugmentation ciblée de la classe 3 s'est avérée déterminante
pour améliorer la détection des formes séveres, initialement
sous-représentées.

La matrice de confusion indique une nette amélioration de la
reconnaissance du stade 3, sans dégradation significative des
performances globales (Figure 4).

Tableau 2. Comparaison des temps d'inférence par plateforme

Temps d'inférence

Des tests ont été réalisés sur différents appareils afin d'évaluer le
temps d'inférence du modéle embarqué. Les résultats varient selon
les performances matérielles, allant de 700 ms sur les smartphones
récents a 2700 ms sur des smartphones plus anciens (> 5 ans)
(Tableau 2).

Précisions techniques

e Android: Le délégué GpuDelegateV2 de TensorFlow Lite est
disponible et améliore nettement les performances. A activer
des que possible.

* i0S: Le plugin tflite_flutter ne prend pas encore en charge Metal
(GPU d'Apple). Linférence se fait donc sur CPU, mais les appareils
récents (comme |'iPhone 16) montrent une excellente réactivité.

e Lapplication adapte dynamiquement la configuration de l'inter-
préteur selon la plateforme, (Platform.isAndroid, Platform.islOS).

Précision et robustesse

Les prédictions faites avec le modele TFLite float16 sont cohérentes
avec celles générées en Python avec le modéle YOLOV natif, avant
conversion. Cela confirme la fidélité de la conversion et la robus-
tesse du modele embarqueé.

Plateforme Délégateur Temps moyen (ms) Commentaire technique
MacBook (YOLO) CPU/GPU natif ~55 YOLOv8m, inférence directe avec Ultralytics
MacBook (TFLite) CPU TFLite ~800 Modele float16, sans délégué GPU
Galaxy A40 CPU (sans délégué) ~9000 Trés lent, traitement purement CPU
Galaxy A40 GPUDelegateV2 ~3600 Temps divisé par 2-3 grace au GPU Delegate
iPhone XR CPU uniquement ~1800 Bonne performance sans Metal
iPhone 16 CPU uniquement ~720 Excellente réactivité malgré I'absence de support Metal
Conclusion Perspectives

Ce projet confirme la faisabilité d'un diagnostic embarqué des
symptomes foliaires induits par le WMV chez le melon basé sur
Iintelligence artificielle, via un modeéle de classification intégré a
une application mobile.

CIl démontre la possibilité d'un cycle complet, de Iannotation a
I'inférence sur smartphone, sans infrastructure serveur ni connexion
Internet.

Le prototype mis en place est robuste, rapide (inférence < 1 se-
conde sur iPhone récent), et facilement transposable. Il pourrait
étre adapté a d'autres maladies du melon ou a d'autres cultures,
en ajustant les jeux de données et les classes.

Enfin, ce travail montre qu'un tel systéme peut étre concu en auto-
nomie par une petite équipe, dans une logique ouverte et réutili-
sable. Bien qu'a ce stade aucun test collectif structuré n‘a encore été
réalisé, il constitue un socle utile pour une phase 2, axée sur les tests
en conditions réelles et 'amélioration du systéme pour un usage
terrain, dans un esprit de réplicabilité et d'application concréte.

Le prototype développé ouvre plusieurs pistes d'évolution.
e Généralisation a d'autres maladies ou espéces:

La chaine de traitement (constitution du jeu de données, entraine-
ment, conversion, intégration mobile) est entierement réplicable.
Un projet similaire pourrait étre mené sur d‘autres virus du melon,
ou élargi a d'autres cultures présentant des symptomes visuels
(tomate, vigne, etc).

Dans cette perspective, une phase d'extension du jeu de don-
nées, en particulier pour les stades séveres, serait nécessaire pour
renforcer la robustesse du modele. Lobjectif serait de disposer
de plusieurs centaines, voire milliers d'images par classe, afin
d'améliorer la généralisation et de préparer un déploiement en
conditions réelles.

e Ajoutd'un module de tracabilité :

Un historique local ou exportable (par exemple en CSV) pourrait
étre ajouté afin de suivre des diagnostics dans le temps, associant
a chaque image sa date, sa localisation et le stade détecté.
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e Plateforme collaborative :

Lapplication pourrait s'intégrer a une plateforme web ouverte, dans
une logique de science participative, permettant a des collecteurs de
transmettre leurs observations et de contribuer a la veille sanitaire.

e Amélioration du traitement IA:
Des pistes plus avancées peuvent étre explorées:

— étude du développement de la maladie sur plante entiére
(etnon feuille détachée) comme l'ont déja entrepris Fuen-
tesetal. (2017) pour la tomate;

- segmentation des zones atteintes (et non une simple
classification);

— analyse de courtes vidéos pour stabiliser les prédictions;

- intégration de modéles multitiches (diagnostic, géoloca-
lisation, suivi temporel).

Ces développements pourraient étre amorcés dans le cadre d'un
stage de Master 2, notamment pour explorer I'extension du dia-
gnostic de la feuille isolée a la plante entiére, étape plus complexe
nécessitant un jeu de données adapté.
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