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RÉSUMÉ

Ce projet explore l’application du Deep Learning à la classification automatique des symptômes 
causés par le watermelon mosaic virus (WMV) sur melon, une culture fortement affectée par ce 
virus. Un modèle léger de classification a été conçu et entraîné à partir d’images de feuilles, puis 
converti au format TFLite pour un déploiement embarqué sur smartphone. Une attention particu-
lière a été portée à la préparation des données, à la réduction du bruit visuel et à la compatibilité 
mobile. L’application mobile obtenue permet une prédiction rapide et localisée des stades de la 
maladie, ouvrant la voie à une aide au diagnostic en conditions expérimentales.
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ABSTRACT

This project explores the application of Deep Learning to the automatic classification of symptoms 
caused by the watermelon mosaic virus (WMV) on melon, a crop heavily affected by this virus. 
A lightweight classification model was designed and trained on leaf images, then converted to 
TFLite format for on-board deployment on smartphones. Particular attention was paid to data 
preparation, visual noise reduction and mobile compatibility. The resulting mobile application 
enables rapid, localised prediction of disease stages, paving the way for diagnostic support in 
experimental conditions.
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Introduction
Les virus des plantes représentent une menace majeure en agri-
culture, compromettant à la fois les rendements et la qualité des 
récoltes. Le watermelon mosaic virus (WMV ; genre Potyvirus, famille 
Potyviridae) est un des principaux virus infectant les cucurbitacées 
comme le melon, la pastèque, la courgette ou le concombre. Présent 
dans le monde entier, le WMV est particulièrement répandu dans 
les zones tempérées et méditerranéennes (Desbiez, 2020).
En l’absence de méthodes curatives, l’utilisation de variétés de 
plantes génétiquement résistantes constitue l’un des principaux 
moyens de lutte contre les virus (Kang et al., 2005). Le développe-
ment de ces variétés nécessite de phénotyper plusieurs centaines 
de génotypes de plante afin d’évaluer leur niveau de résistance à 
l’agent pathogène, puis d’exploiter ces données à l’aide de mo-
dèles génétiques permettant d’identifier les gènes de résistance 
impliqués (Korte & Farlow, 2013).
Chez le pathosystème melon-WMV, une méthode de phénotypage 
couramment employée consiste à noter la sévérité des symptômes 
foliaires selon une échelle de notation standardisée (Díaz-Pendón 
et al., 2005 ; Gilbert et al., 1994 ; López-Martín et al., 2024 ; Palo-
mares-Rius et al., 2011). Les symptômes peuvent aller de faibles 
mosaïques à des déformations foliaires sévères selon les souches 
virales et les génotypes de plante (Lecoq & Desbiez, 2012). Ce phé-
notypage visuel reste cependant subjectif et dépend fortement de 
l’expertise de l’observateur, ce qui peut introduire des variations 
entre évaluateurs. De plus, ce travail de phénotypage demeure une 
étape longue et fastidieuse dans les programmes de recherche et 
de sélection variétale. Le développement d’outils permettant de 
standardiser et d’automatiser la reconnaissance et la quantifica-
tion des symptômes ouvre donc des perspectives majeures pour 
l’amélioration génétique des cucurbitacées et la gestion durable 
des maladies virales.
Dans ce contexte, nous avons cherché à développer un outil d’ana-
lyse automatisée des symptômes du WMV, en nous appuyant sur 
des approches de vision par ordinateur et d’intelligence artificielle 
(Ferentinos, 2018 ; Mohanty et al., 2016). L’objectif est de conce-
voir un modèle léger, embarquable sur smartphone, capable de 
classifier l’intensité des symptômes à partir de photos de feuilles 
asymptomatiques ou infectées, dans le cadre du phénotypage 
de masse.
L’essor de l’intelligence artificielle (IA) et des méthodes d’analyse 
d’image offre de nouvelles perspectives pour automatiser et stan-
dardiser ces observations. L’analyse par Deep Learning, en particu-

lier, permet de classifier automatiquement les symptômes à partir 
de simples photographies de feuilles (Barbedo, 2019).
Une étude exploratoire a été menée pour évaluer cette approche 
dans le contexte du WMV, en s’appuyant sur la constitution d’un 
jeu d’images annotées et l’expérimentation de plusieurs architec-
tures de classification, jusqu’au déploiement du modèle retenu 
dans une application mobile dédiée (Mrisho et al., 2020). Nous 
en présentons ici les principales étapes : préparation et traitement 
du jeu de données, entraînement et évaluation du modèle retenu, 
puis intégration dans un outil léger, simple d’usage et adapté aux 
besoins du phénotypage en conditions expérimentales.

Préparation et traitement du jeu de 
données

Constitution du jeu de données
Le jeu de données a été obtenu en semant 130 génotypes de 
melon (Cucumis melo) représentatifs de la diversité mondiale de 
l’espèce et présentant différents niveaux de résistance au WMV, avec 
6 plantes par génotype. Une semaine après semis, les plantes ont 
été inoculées mécaniquement avec la souche LL1A. Un mois après 
inoculation, une feuille par plante a été prélevée pour réaliser la 
prise de photo. L’expérience a été effectuée en conditions contrôlées 
en chambre de culture (photopériode : 16h lumière/8h obscurité, 
températures : 24 °C jour/18 °C nuit).
Les photographies ont été réalisées dans des conditions maîtrisées 
(fond noir, distance fixe grâce à un trépied) afin d’assurer l’homo-
généité des images et de limiter les biais d’analyse. Les images ont 
ensuite été classées manuellement selon une échelle en quatre 
stades, du stade 0 : feuille asymptomatique au stade 3 : forte dé-
formation foliaire (Figure 1).
En vue de leur utilisation dans un modèle d’apprentissage automa-
tique, les images ont ensuite fait l’objet d’un prétraitement struc-
turé comprenant les étapes suivantes : un nettoyage des images 
(recadrage, redimensionnement, suppression des doublons ou 
images floues), une gestion des déséquilibres entre classes (par 
échantillonnage et équilibrage), ainsi qu’une augmentation des 
données via des transformations simples (rotations, symétries, 
variations de luminosité).
Les images brutes, d’une résolution initiale de 4 496×3 000 pixels, 
ont fait l’objet d’un prétraitement systématique (Figure 2) visant à 
améliorer la qualité du signal et à normaliser les entrées du modèle. 

Figure 1. Exemples d’images de feuilles de melon représentatives de l’intensité des symptômes causés par le WMV 
pour chacun des 4 stades (0 à 3). Prétraitement des images
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Une procédure automatique a permis de détecter la feuille domi-
nante en exploitant son contraste avec le fond noir et la proportion 
de pixels verts. Le contour présentant le meilleur ratio de pixels 
verts dans l’espace HSV était sélectionné, puis utilisé pour extraire 
la feuille sous forme de masque binaire.
Le fond était ensuite remplacé par une couleur uniforme (gris 
moyen), et l’image recadrée autour de la feuille. Chaque image 
était finalement redimensionnée à 640×640 pixels sans distorsion, 
via une mise à l’échelle conservant le rapport hauteur/largeur, suivie 
d’un padding homogène sur fond gris.

Équilibrage du jeu de données
Le jeu de données ainsi obtenu présente un déséquilibre notable 
entre classes, en particulier pour le stade 3 (formes sévères). Pour 
anticiper les biais d’apprentissage, les données ont été réparties de 
manière stratifiée en deux ensembles : 80 % pour l’entrainement 
et 20 % pour la validation, tout en conservant une distribution re-
présentative des stades dans les ensembles originaux (Figure 3).

Augmentation de données ciblée
Afin d’atténuer le déséquilibre observé, une stratégie d’augmen-
tation de données ciblée a été mise en œuvre pour la classe 3. 

À chaque image ont été appliquées des transformations contrôlées : 
retournement horizontal, zoom, translation, rotation légère, et 
flou modéré.
Cette démarche a permis d’augmenter la diversité intra-classe sans 
introduire d’artéfacts visuels.
Les matrices de confusion ont été établies à partir des prédictions 
du modèle de classification YOLOv8m-cls (Ultralytics) sur l’ensemble 
de validation : chaque image est affectée à la classe la plus probable 
(argmax), puis la matrice est normalisée par classe vraie afin d’expri-
mer des proportions. Compte tenu du faible effectif de validation 
pour la classe 3 (n = 14), nous rapportons en complément une 
analyse sur une validation enrichie (169 images originales + 28 
variantes transformées), interprétée comme un test de sensibilité 
à des transformations légères. Les matrices de confusion corres-
pondantes sont présentées en Figure 4. Les résultats suggèrent 
une amélioration de la détection du stade 3, au prix d’une baisse 
du score top-1 global (0.905 sans augmentation vs 0.878 avec 
augmentation).

Entrainement et évaluation du modèle
Cette étude vise avant tout à illustrer une démarche de classification 
supervisée et un pipeline d’entraînement reproductible dans un 
contexte de données limitées. En l’absence d’un volume suffisant 
pour constituer un ensemble de test indépendant, les performances 
sont rapportées sur un ensemble de validation, complétées par 
une analyse par classe (matrices de confusion) et une évaluation 
de sensibilité aux transformations lorsque pertinent.
Plusieurs modèles de classification visuelle ont été évalués : YOLO-
v11n-cls, YOLOv8n-cls, et YOLOv8m-cls. Le modèle YOLOv8m-cls a 
été retenu pour son bon compromis entre robustesse et rapidité 
d’inférence.

Figure 2. Prétraitement : détection et sélection de la feuille dominante, fond 
uniforme, redimensionnement pour l’entraînement

Figure 3. Distribution des classes dans le jeu de données complet, puis dans les ensembles d’entraînement et de validation 
après répartition stratifiée (80 % / 20 %). 
Le déséquilibre du stade 3, motive l’exploration d’une augmentation ciblée.
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L’entrainement a été réalisé avec la bibliothèque Ultralytics, en 
mode classification supervisée, sur des images 640 x 640 pixels 
avec les paramètres suivants :
•	 Nombre d’époques : 50
•	 Batch size : 16
•	 Optimiseur : Adam avec un taux d’apprentissage initial 

de 0.001
•	 Scheduler du taux d’apprentissage : automatique 

(avec early stopping si stagnation)
•	 Patience : 10
•	 Augmentations : désactivées initialement, car les transforma-

tions par défaut d’Ultralytics introduisaient des artefacts visuels 
peu cohérents avec les cas réels

•	 Classes : 4 niveaux de gravité (de l’absence de symptômes 
jusqu’à la forte déformation de la feuille)

•	 Répartition : 80 % entraînement, 20 % validation (aléatoire 
mais stratifiée)

Une expérimentation ultérieure avec la bibliothèque Albumen-
tations a permis d’identifier des augmentations plus adaptées, 
notamment pour la classe 3, sous-représentée. En appliquant 
des transformations réalistes (rotation légère, flou modéré, etc), 
il a été possible d’augmenter la diversité sans nuire à la lisibilité 
des symptômes.
Sur la validation originale, le modèle atteint une précision top-1 
de 0.905. L’augmentation ciblée de la classe 3 vise à améliorer la 
reconnaissance des formes sévères et est analysée via les matrices 
de confusion (Figure 4) ; sur l’évaluation enrichie, le score top-1 
global est de 0.878. Ces tendances devront être confirmées sur 
un jeu de données de validation plus large.

Intégration dans une application mobile

Conversion et déploiement mobile
Le modèle final a été converti au format TFLite pour permettre son 
exécution directe sur smartphone. Deux optimisations complé-
mentaires ont été appliquées :

•	 Quantification float16 lors de l’export TFLite (half=True), ré-
duisant la taille du modèle sans perte notable de précision.

•	 Chargement avec délégation GPU (GpuDelegateV2) assurant 
une inférence fluide :

	— moins de 700 ms sur smartphone récent (moins d’un an) ;
	— moins de 2 700 ms sur un appareil ancien (6 à 7 ans).

Développement de l’application mobile
L’application mobile, développée avec Flutter pour une compa-
tibilité Android/iOS, permet à l’utilisateur de prendre une photo 
ou d’en sélectionner une dans la galerie, d’envoyer l’image au 
modèle embarqué, puis d’afficher le stade estimé accompagné 
d’une probabilité (Figure 5).
L’inférence se fait hors-ligne, garantissant un usage autonome 
sans connexion réseau.
L’interface est minimaliste et accessible à un public non spécialiste. 
Elle sert également de pré-test avant une phase 2 axée sur la dé-
tection en temps réel sur le terrain.

Figure 4. Matrices de confusion normalisées obtenues avec un réseau de classification YOLOv8m-cls (Ultralytics), avant 
et après augmentation ciblée de la classe 3 appliquée à l’ensemble d’entraînement.
L’évaluation est réalisée sur une validation enrichie utilisée comme test de sensibilité aux transformations.

Figure 5. Aperçu de l’interface mobile (iPhone)
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Plateforme Délégateur Temps moyen (ms) Commentaire technique

MacBook (YOLO) CPU/GPU natif ~55 YOLOv8m, inférence directe avec Ultralytics

MacBook (TFLite) CPU TFLite ~800 Modèle float16, sans délégué GPU

Galaxy A40 CPU (sans délégué) ~9 000 Très lent, traitement purement CPU

Galaxy A40 GPUDelegateV2 ~3 600 Temps divisé par 2–3 grâce au GPU Delegate

iPhone XR CPU uniquement ~1 800 Bonne performance sans Metal

iPhone 16 CPU uniquement ~720 Excellente réactivité malgré l’absence de support Metal

Classe Label Nombre
d’images

Précision top-1
(%)

0 asymptomatique 212 92.0

1 mosaïque faible 259 85.3

2 mosaïque forte 309 84.2

3 forte déformation 71 91.1

Tableau 2. Comparaison des temps d’inférence par plateforme

Tableau 1. Récapitulatif des classes / métriques

Conclusion
Ce projet confirme la faisabilité d’un diagnostic embarqué des 
symptômes foliaires induits par le WMV chez le melon basé sur 
l’intelligence artificielle, via un modèle de classification intégré à 
une application mobile.
CIl démontre la possibilité d’un cycle complet, de l’annotation à 
l’inférence sur smartphone, sans infrastructure serveur ni connexion 
Internet.
Le prototype mis en place est robuste, rapide (inférence < 1 se-
conde sur iPhone récent), et facilement transposable. Il pourrait 
être adapté à d’autres maladies du melon ou à d’autres cultures, 
en ajustant les jeux de données et les classes.
Enfin, ce travail montre qu’un tel système peut être conçu en auto-
nomie par une petite équipe, dans une logique ouverte et réutili-
sable. Bien qu’à ce stade aucun test collectif structuré n’a encore été 
réalisé, il constitue un socle utile pour une phase 2, axée sur les tests 
en conditions réelles et l’amélioration du système pour un usage 
terrain, dans un esprit de réplicabilité et d’application concrète.

Perspectives
Le prototype développé ouvre plusieurs pistes d’évolution.
•	 Généralisation à d’autres maladies ou espèces :
La chaîne de traitement (constitution du jeu de données, entraîne-
ment, conversion, intégration mobile) est entièrement réplicable. 
Un projet similaire pourrait être mené sur d’autres virus du melon, 
ou élargi à d’autres cultures présentant des symptômes visuels 
(tomate, vigne, etc).
Dans cette perspective, une phase d’extension du jeu de don-
nées, en particulier pour les stades sévères, serait nécessaire pour 
renforcer la robustesse du modèle. L’objectif serait de disposer 
de plusieurs centaines, voire milliers d’images par classe, afin 
d’améliorer la généralisation et de préparer un déploiement en 
conditions réelles.
•	 Ajout d’un module de traçabilité :
Un historique local ou exportable (par exemple en CSV) pourrait 
être ajouté afin de suivre des diagnostics dans le temps, associant 
à chaque image sa date, sa localisation et le stade détecté.

Résultats

Précision de classification
Le modèle YOLOv8m-cls atteint une précision top-1 de 0.905 sur 
l’ensemble de validation, avec un bon équilibre entre les différentes 
classes (Tableau 1).

L’augmentation ciblée de la classe 3 s’est avérée déterminante 
pour améliorer la détection des formes sévères, initialement 
sous-représentées.
La matrice de confusion indique une nette amélioration de la 
reconnaissance du stade 3, sans dégradation significative des 
performances globales (Figure 4).

Temps d’inférence
Des tests ont été réalisés sur différents appareils afin d’évaluer le 
temps d’inférence du modèle embarqué. Les résultats varient selon 
les performances matérielles, allant de 700 ms sur les smartphones 
récents à 2 700 ms sur des smartphones plus anciens (> 5 ans) 
(Tableau 2).

Précisions techniques
•	 Android : Le délégué GpuDelegateV2 de TensorFlow Lite est 

disponible et améliore nettement les performances. À activer 
dès que possible.

•	 iOS : Le plugin tflite_flutter ne prend pas encore en charge Metal 
(GPU d’Apple). L’inférence se fait donc sur CPU, mais les appareils 
récents (comme l’iPhone 16) montrent une excellente réactivité.

•	 L’application adapte dynamiquement la configuration de l’inter-
préteur selon la plateforme, (Platform.isAndroid, Platform.isIOS).

Précision et robustesse
Les prédictions faites avec le modèle TFLite float16 sont cohérentes 
avec celles générées en Python avec le modèle YOLOv8 natif, avant 
conversion. Cela confirme la fidélité de la conversion et la robus-
tesse du modèle embarqué.
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•	 Plateforme collaborative :
L’application pourrait s’intégrer à une plateforme web ouverte, dans 
une logique de science participative, permettant à des collecteurs de 
transmettre leurs observations et de contribuer à la veille sanitaire.
•	 Amélioration du traitement IA :
Des pistes plus avancées peuvent être explorées :

	— étude du développement de la maladie sur plante entière 
(et non feuille détachée) comme l’ont déjà entrepris Fuen-
tes et al. (2017) pour la tomate ;

	— segmentation des zones atteintes (et non une simple 
classification) ;

	— analyse de courtes vidéos pour stabiliser les prédictions ;
	— intégration de modèles multitâches (diagnostic, géoloca-
lisation, suivi temporel).

Ces développements pourraient être amorcés dans le cadre d’un 
stage de Master 2, notamment pour explorer l’extension du dia-
gnostic de la feuille isolée à la plante entière, étape plus complexe 
nécessitant un jeu de données adapté.
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