L’enrichissement du milieu de vie des poissons
Résumé
Comme tous les vertébrés, les poissons sont des êtres sensibles et leurs capacités cognitives ont été largement démontrées. Raffiner les conditions de vie des poissons utilisés à des fins expérimentales passe par l’enrichissement de leur milieu. Qu’il soit social, alimentaire, structurel, sensoriel ou cognitif, de nombreuses études ont démontré l’intérêt de l’enrichissement chez plusieurs espèces de poissons. Dans cet article, nous dressons un état des lieux des différentes catégories d’enrichissements applicables aux poissons, ainsi que leurs effets sur les principaux indicateurs de bien-être étudiés dans la littérature : les comportements agressifs, la flexibilité comportementale, les réponses au stress, les fonctions biologiques et les capacités cognitives. En tenant compte des contraintes de temps, de ressources et d’espace disponibles de la structure expérimentale, nous proposons des solutions concrètes pour contourner les éventuels inconvénients rencontrés, notamment pour les enrichissements structurels. Des alternatives telles que les posters, les structures suspendues et la diffusion de bulles seraient des stratégies à privilégier pour leur facilité d’entretien. Les enrichissements sensoriels auditifs et visuels (modulation de l’éclairage), ou encore l’enrichissement cognitif consistant à prévenir les poissons de la survenue d’évènements sont des stratégies dont l’efficacité pour diminuer le stress et améliorer le bien-être des poissons a été démontrée chez plusieurs espèces ; de plus, ces stratégies sont relativement simples à mettre en place dans les structures expérimentales.
Références
- Abreu, C.C., Fernandes, T.N., Henrique, et al.2019. Small-scale environmental enrichment and exercise enhance learning and spatial memory of Carassius auratus, and increase cell proliferation in the telencephalon: an exploratory study. Brazilian Journal of Medical and Biological Research 52. https://doi.org/10.1590/1414-431x20198026
- Adron, J.W., 1972. A Design for Automatic and Demand Feeders for Experimental Fish. ICES Journal of Marine Science 34, 300-305. https://doi.org/10.1093/icesjms/34.2.300
- Agrillo, C., Bisazza, A., 2014. Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods 234, 82-91. https://doi.org/10.1016/j.jneumeth.2014.04.027
- Ahlbeck Bergendahl, I., Salvanes, A.G.V., Braithwaite, V.A., 2016. Determining the effects of duration and recency of exposure to environmental enrichment. Applied Animal Behaviour Science 176, 163-169. https://doi.org/10.1016/j.applanim.2015.11.002
- Alanärä, A., 1992. Demand feeding as a self-regulating feeding system for rainbow trout (Oncorhynchus mykiss) in net-pens. Aquaculture 108, 347-356. https://doi.org/10.1016/0044-8486(92)90118-5
- Amichaud, O., Lafond, T., Fazekas, G.L., et al. 2024. Air bubble curtain improves the welfare of captive rainbow trout fry and fingerlings. Aquaculture 586, 740828. https://doi.org/10.1016/j.aquaculture.2024.740828
- Arechavala-Lopez, P., Caballero-Froilán, J.C., et al. 2020. Enriched environments enhance cognition, exploratory behaviour and brain physiological functions of Sparus aurata. Scientific reports 10, 1-10. https://doi.org/10.1038/s41598-020-68306-6
- Arechavala‐Lopez, P., Cabrera‐Álvarez, M.J., Maia, C.M., Saraiva, J.L., 2021. Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Reviews in Aquaculture 14, 704-728. https://doi.org/10.1111/raq.12620
- Barley, A.J., Coleman, R.M., 2010. Habitat structure directly affects aggression in convict cichlids Archocentrus nigrofasciatus. Current Zoology 56, 52-56. https://doi.org/10.1093/czoolo/56.1.52
- Barreto, R.E., Carvalho, G.G.A., Volpato, G.L., 2011. The aggressive behavior of Nile tilapia introduced into novel environments with variation in enrichment. Zoology 114, 53-57. https://doi.org/10.1016/j.zool.2010.09.001
- Batzina, A., Dalla, C., Papadopoulou-Daifoti, Z., Karakatsouli, N., 2014a. Effects of environmental enrichment on growth, aggressive behaviour and brain monoamines of gilthead seabream Sparus aurata reared under different social conditions. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 169, 25-32. https://doi.org/10.1016/j.cbpa.2013.12.001
- Batzina, A., Dalla, C., Tsopelakos, A., Papadopoulou-Daifoti, Z., Karakatsouli, N., 2014b. Environmental enrichment induces changes in brain monoamine levels in gilthead seabream Sparus aurata. Physiology & Behavior 130, 85-90. https://doi.org/10.1016/j.physbeh.2014.03.023
- Braithwaite, V.A., Salvanes, A.G.V., 2005. Environmental variability in the early rearing environment generates behaviourally flexible cod: implications for rehabilitating wild populations. Proceedings of the Royal Society B-Biological Sciences 272, 1107-1113. https://doi.org/10.1098/rspb.2005.3062
- Brown, C., Davidson, T., Laland, K., 2003. Environmental enrichment and prior experience of live prey improve foraging behaviour in hatchery-reared Atlantic salmon. Journal of Fish Biology 63, 187-196. https://doi.org/10.1111/j.1095-8649.2003.00208.x
- Brown, C., Laland, K., Krause, J., 2011. Fish Cognition and Behaviour, Fish Cognition and Behaviour, Wiley, pp. 1-9. https://doi.org/10.1002/9781444342536.ch1
- Brunet, V., Kleiber, A., Patinote, A., Sudan, et al. 2022. Positive welfare effects of physical enrichments from the nature-, functions- and feeling- based approaches in farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 550, 737825. https://doi.org/10.1016/j.aquaculture.2021.737825
- Cañon Jones, H.A., Noble, C., Damsgård, B., Pearce, G.P., 2012. Investigating the influence of predictable and unpredictable feed delivery schedules upon the behaviour and welfare of Atlantic salmon parr (Salmo salar) using social network analysis and fin damage. Applied Animal Behaviour Science 138, 132-140. https://doi.org/10.1016/j.applanim.2012.01.019
- Cerqueira, M., Millot, S., Felix, A., Silva, T., et al. 2020. Cognitive appraisal in fish: stressor predictability modulates the physiological and neurobehavioural stress response in sea bass. Proceedings of the Royal Society B-Biological Sciences 287. https://doi.org/10.1098/rspb.2019.2922
- Chrousos, G.P., 1998. Stressors, Stress, and Neuroendocrine Integration of the Adaptive Response: The 1997 Hans Selye Memorial Lecture. Annals of the New York Academy of Sciences 851, 311-335. https://doi.org/10.1111/j.1749-6632.1998.tb09006.x
- Collymore, C., Tolwani, R.J., Rasmussen, S., 2015. The Behavioral Effects of Single Housing and Environmental Enrichment on Adult Zebrafish (Danio rerio). Journal of the American Association for Laboratory Animal Science 54, 280-285.
- Crank, K.M., Kientz, J.L., Barnes, M.E., 2019. An Evaluation of Vertically Suspended Environmental Enrichment Structures during Rainbow Trout Rearing. North American Journal of Aquaculture 81, 94-100. https://doi.org/10.1002/naaq.10064
- da Silva, M.C., Canário, A.V.M., Hubbard, P.C., Gonçalves, D.M.F., 2021. Physiology, endocrinology and chemical communication in aggressive behaviour of fishes. Journal of Fish Biology 98, 1217-1233. https://doi.org/10.1111/jfb.14667
- Dolinsek, I.J., Grant, J.W.A., Biron, P.M., 2007. The effect of habitat heterogeneity on the population density of juvenile Atlantic salmon Salmo salar L. Journal of Fish Biology 70, 206-214. https://doi.org/10.1111/j.1095-8649.2006.01296.x
- Endo, M., Kumahara, C., Yoshida, T., Tabata, M., 2002. Reduced stress and increased immune responses in Nile tilapia kept under self-feeding conditions. Fisheries Science 68, 253-257. https://doi.org/10.1046/j.1444-2906.2002.00419.x
- Franks, B., 2018. Cognition as a cause, consequence, and component of welfare, Advances in Agricultural Animal Welfare, pp. 3-24. https://doi.org/10.1016/B978-0-08-101215-4.00001-8
- Franks, B., Gaffney, L.P., Graham, C., Weary, D.M., 2023. Curiosity in zebrafish (Danio rerio)? Behavioral responses to 30 novel objects. Frontiers in Veterinary Science 9. https://doi.org/10.3389/fvets.2022.1062420
- Galhardo, L., Almeida, O., Oliveira, R.F., 2011. Measuring motivation in a cichlid fish: An adaptation of the push-door paradigm. Applied Animal Behaviour Science 130, 60-70. https://doi.org/10.1016/j.applanim.2010.12.008
- Gauy, A., Bolognesi, M.C., Martins, G.D., Goncalves-de-Freitas, E., 2021. Preference and Motivation Tests for Body Tactile Stimulation in Fish. Animals : an open access journal from MDPI 11. https://doi.org/10.3390/ani11072042
- Gauy, A.C.D., Bolognesi, M.C., Gonçalves-de-Freitas, E., 2023. Body Tactile Stimulation Reduces the Effects of High Stocking Density on the Welfare of Nile Tilapia (Oreochromis niloticus). Fishes 8. https://doi.org/10.3390/fishes8060320
- Gierszewski, S., Bleckmann, H., Schluessel, V., 2013. Cognitive Abilities in Malawi Cichlids (Pseudotropheus sp.): Matching-to-Sample and Image/Mirror-Image Discriminations. PloS one 8, e57363. https://doi.org/10.1371/journal.pone.0057363
- Güller, U., Önalan, Ş., Arabacı, M., Karataş, B., Yaşar, M., Küfrevioğlu, Ö.İ., 2020. Effects of different LED light spectra on rainbow trout (Oncorhynchus mykiss): in vivo evaluation of the antioxidant status. Fish Physiology and Biochemistry 46, 2169-2180. https://doi.org/10.1007/s10695-020-00865-x
- Heydarnejad, M.S., Parto, M., Pilevarian, A.A., 2013. Influence of light colours on growth and stress response of rainbow trout (Oncorhynchus mykiss) under laboratory conditions. Journal of Animal Physiology and Animal Nutrition 97, 67-71. https://doi.org/10.1111/j.1439-0396.2011.01243.x
- Jobling, M., 2003. The thermal growth coefficient (TGC) model of fish growth: a cautionary note. Aquaculture Research 34, 581-584. https://doi.org/10.1046/j.1365-2109.2003.00859.x
- Kalueff, A.V., Gebhardt, M., Stewart, A.M., Cachat, J.M., et al. Neuroscience Research, C., 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10, 70-86. https://doi.org/10.1089/zeb.2012.0861
- Karvonen, A., Aalto-Araneda, M., Virtala, A.-M., Kortet, R., et al. 2016. Enriched rearing environment and wild genetic background can enhance survival and disease resistance of salmonid fishes during parasite epidemics. Journal of Applied Ecology 53, 213-221. https://doi.org/10.1111/1365-2664.12568
- Karvonen, A., Räihä, V., Klemme, I., Ashrafi, R., et al. 2021. Quantity and Quality of Aquaculture Enrichments Influence Disease Epidemics and Provide Ecological Alternatives to Antibiotics. Antibiotics 10, 335. https://doi.org/10.3390/antibiotics10030335
- Kientz, J.L., Crank, K.M., Barnes, M.E., 2018. Enrichment of Circular Tanks with Vertically Suspended Strings of Colored Balls Improves Rainbow Trout Rearing Performance. North American Journal of Aquaculture 80, 162-167. https://doi.org/10.1002/naaq.10017
- Kistler, C., Hegglin, D., Wurbel, H., Konig, B., 2011. Preference for structured environment in zebrafish (Danio rerio) and checker barbs (Puntius oligolepis). Applied Animal Behaviour Science 135, 318-327. https://doi.org/10.1016/j.applanim.2011.10.014
- Kleiber, A., Le-Calvez, J.M., Kerneis, T., Batard, A., et al. 2022. Positive effects of bubbles as a feeding predictor on behaviour of farmed rainbow trout. Scientific reports 12, 11368. https://doi.org/10.1038/s41598-022-15302-7
- Kleiber, A., Stomp, M., Rouby, M., Ferreira, V.H.B., et al. 2023. Cognitive enrichment to increase fish welfare in aquaculture: A review. Aquaculture 575. https://doi.org/10.1016/j.aquaculture.2023.739654
- Krebs, E., Barnes, M.E., Nero, P.A., 2016. Covering Rearing Tanks Improves Brown Trout Growth and Feed Conversion. Agricultural Sciences 07, 869-878. https://doi.org/10.4236/as.2016.712079
- Krebs, E., Huysman, N., Voorhees, J.M., Barnes, M.E., 2018. Suspended Arrays Improve Rainbow Trout Growth during Hatchery Rearing in Circular Tanks. International Journal of Aquaculture and Fishery Sciences, 27-30.
- Krueger, L.D., Thurston, S.E., Kirk, J., Elsaeidi, F., et al. 2020. Enrichment Preferences of Singly Housed Zebrafish (Danio rerio). Journal of the American Association for Laboratory Animal Science: JAALAS 59, 148-155. https://doi.org/10.30802/AALAS-JAALAS-19-000078
- Laubu, C., Louâpre, P., Dechaume-Moncharmont, F.-X., 2019. Pair-bonding influences affective state in a monogamous fish species. Proceedings of the Royal Society B: Biological Sciences 286, 20190760. https://doi.org/10.1098/rspb.2019.0760
- Lee, J.S.F., Berejikian, B.A., 2008. Effects of the rearing environment on average behaviour and behavioural variation in steelhead. Journal of Fish Biology 72, 1736-1749. https://doi.org/10.1111/j.1095-8649.2008.01848.x
- Lopez-Olmeda, J.F., Noble, C., Sanchez-Vazquez, F.J., 2012. Does feeding time affect fish welfare? Fish Physiology and Biochemistry 38, 143-152. https://doi.org/10.1007/s10695-011-9523-y
- Luchiari, A.C., Pirhonen, J., 2008. Effects of ambient colour on colour preference and growth of juvenile rainbow trout Oncorhynchus mykiss (Walbaum). Journal of Fish Biology 72, 1504-1514. https://doi.org/10.1111/j.1095-8649.2008.01824.x
- Manteuffel, G., Langbein, J., Puppe, B., 2009. From operant learning to cognitive enrichment in farm animal housing: bases and applicability. Animal Welfare 18, 87-95. https://doi.org/10.1017/S0962728600000105
- Masud, N., Ellison, A., Pope, E.C., Cable, J., 2020. Cost of a deprived environment - increased intraspecific aggression and susceptibility to pathogen infections. The Journal of experimental biology 223. https://doi.org/10.1242/jeb.229450
- McLean, E., 2021. Fish tank color: An overview. Aquaculture 530, 735750. https://doi.org/10.1016/j.aquaculture.2020.735750
- McVicar, A.H., 1987. Black patch necrosis of the skin of Solea solea (L.): the role of sand in prophylaxis and treatment. Journal of fish diseases 10, 59-63. https://doi.org/10.1111/j.1365-2761.1987.tb00719.x
- Mellor, D.J., 2016. Updating Animal Welfare Thinking: Moving beyond the «Five Freedoms» towards «A Life Worth Living». Animals : an open access journal from MDPI 6. https://doi.org/10.3390/ani6030021
- Millidine, K.J., Armstrong, J.D., Metcalfe, N.B., 2006. Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology 20, 839-845. https://doi.org/10.1111/j.1365-2435.2006.01166.x
- Millot, S., Cerqueira, M., Castanheira, M.F., et al. 2014. Use of conditioned place preference/avoidance tests to assess affective states in fish. Applied Animal Behaviour Science 154, 104-111. https://doi.org/10.1016/j.applanim.2014.02.004
- Mohadzir, S., Rahmah, S., Rasdi, N.W., Jalilah, M., Abd Ghaffar, M., Chang, Y.M., Tuzan, A.D., Lim, L.S., Liew, H.J., 2022. Intraspecific aggression in the jewel cichlid Hemichromis bimaculatus reared under different background colours. Aquaculture Research 53, 6407-6413. https://doi.org/10.1111/are.16083
- Mork, O.I., Gulbrandsen, J., 1994. Vertical activity of 4 salmonid species in response to changes between darkness and 2 intensities of light. Aquaculture 127, 317-328. https://doi.org/10.1016/0044-8486(94)90234-8
- Näslund, J., Johnsson, J.I., 2016. Environmental enrichment for fish in captive environments: effects of physical structures and substrates. Fish & Fisheries 17, 1. https://doi.org/10.1111/faf.12088
- Näslund, J., Rosengren, M., Del Villar, D., Gansel, L., et al. 2013. Hatchery tank enrichment affects cortisol levels and shelter-seeking in Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 70, 585-590. https://doi.org/10.1139/cjfas-2012-0302
- Noble, C., Kadri, S., Mitchell, D.F., Huntingford, F.A., 2007. Influence of feeding regime on intraspecific competition, fin damage and growth in 1+ Atlantic salmon parr (Salmo salar L.) held in freshwater production cages. Aquaculture Research 38, 1137-1143. https://doi.org/10.1111/j.1365-2109.2007.01777.x
- Nordgreen, J., Janczak, A.M., Hovland, A.L., Ranheim, B., Horsberg, T.E., 2010. Trace classical conditioning in rainbow trout (Oncorhynchus mykiss): what do they learn? Animal Cognition 13, 303-309. https://doi.org/10.1007/s10071-009-0267-3
- North, B.P., Turnbull, J.F., Ellis, T., Porter, M.J., et al. 2006. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466-479. https://doi.org/10.1016/j.aquaculture.2006.01.004
- Ottesen, O.H., Strand, H.K., 1996. Growth, development, and skin abnormalities of halibut (Hippoglossus hippoglossus L.) juveniles kept on different bottom substrates. Aquaculture 146, 17-25. https://doi.org/10.1016/S0044-8486(96)01359-2
- Papoutsoglou, S.E., Karakatsouli, N., Skouradakis, C., Papoutsoglou, E.S., et al. 2013. Effect of musical stimuli and white noise on rainbow trout (Oncorhynchus mykiss) growth and physiology in recirculating water conditions. Aquacultural Engineering 55, 16-22. https://doi.org/10.1016/j.aquaeng.2013.01.003
- Parker, T.M., Barnes, M.E., 2014. Rearing Velocity Impacts on Landlocked Fall Chinook Salmon (Oncorhynchus tshawytscha) Growth, Condition, and Survival. Open Journal of Animal Sciences 4, 9. https://doi.org/10.4236/ojas.2014.45031
- Paśko, Ł., 2010. Tool-like behavior in the sixbar wrasse, Thalassoma hardwicke (Bennett, 1830). Zoo Biol 29, 767-773. https://doi.org/10.1002/zoo.20307
- Pounder, K.C., Mitchell, J.L., Thomson, J.S., Pottinger, T.G., et al. 2016. Does environmental enrichment promote recovery from stress in rainbow trout? Applied Animal Behaviour Science 176, 136-142. https://doi.org/10.1016/j.applanim.2016.01.009
- Räihä, V., Sundberg, L.R., Ashrafi, R., Hyvärinen, P., et al. 2019. Rearing background and exposure environment together explain higher survival of aquaculture fish during a bacterial outbreak. Journal of Applied Ecology 56, 1741-1750. https://doi.org/10.1111/1365-2664.13393
- Roberts, L.J., Taylor, J., Garcia De Leaniz, C., 2011. Environmental enrichment reduces maladaptive risk-taking behavior in salmon reared for conservation. Biological Conservation 144, 1972-1979. https://doi.org/10.1016/j.biocon.2011.04.017
- Rosburg, A.J., Fletcher, B.L., Barnes, M.E., Treft, C.E., Bursell, B.R., 2019. Vertically-Suspended Environmental Enrichment Structures Improve the Growth of Juvenile Landlocked Fall Chinook Salmon. International Journal of Innovative Studies in Aquatic Biology and Fisheries 5. https://doi.org/10.20431/2454-7670.0501004
- Rosengren, M., Kvingedal, E., Naslund, J., Johnsson, J.I., Sundell, K., 2017. Born to be wild: effects of rearing density and environmental enrichment on stress, welfare, and smolt migration in hatchery-reared Atlantic salmon. Canadian Journal of Fisheries and Aquatic Sciences 74, 396-405. https://doi.org/10.1139/cjfas-2015-0515
- Salvanes, A.G., Moberg, O., Ebbesson, L.O., Nilsen, T.O., et al. 2013. Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proceedings of the Royal Society B: Biological Sciences 280, 20131331. https://doi.org/10.1098/rspb.2013.1331
- Schirmer, A., Jesuthasan, S., Mathuru, A.S., 2013. Tactile stimulation reduces fear in fish. Frontiers in behavioral neuroscience 7. https://doi.org/10.3389/fnbeh.2013.00167
- Schroeder, P., Jones, S., Young, I.S., Sneddon, L.U., 2014. What do zebrafish want? Impact of social grouping, dominance and gender on preference for enrichment. Laboratory Animals 48, 328-337. https://doi.org/10.1177/0023677214538239
- Sen Sarma, O., Frymus, N., Axling, F., Thörnqvist, P.O., et al. 2023. Optimizing zebrafish rearing-Effects of fish density and environmental enrichment. Frontiers in behavioral neuroscience 17. https://doi.org/10.3389/fnbeh.2023.1204021
- Sheenaja, K.k., Thomas, K.J., 2011. Influence of habitat complexity on route learning among different populations of climbing perch (Anabas testudineus Bloch, 1792). Marine & Freshwater Behaviour & Physiology 44, 349. https://doi.org/10.1080/10236244.2011.642503
- Smith, A., Gray, H., 2011. Goldfish in a tank: the effect of substrate on foraging behaviour in aquarium fish. Animal Welfare 20, 311-319. https://doi.org/10.1017/S0962728600002876
- Sneddon, L.U., 2003. The evidence for pain in fish: the use of morphine as an analgesic. Applied Animal Behaviour Science 83, 153-162. https://doi.org/10.1016/S0168-1591(03)00113-8
- Sneddon, L.U., 2015. Pain in aquatic animals. The Journal of experimental biology 218, 967-976. https://doi.org/10.1242/jeb.088823
- Sneddon, L.U., Braithwaite, V.A., Gentle, M.J., 2003. Novel object test: Examining nociception and fear in the rainbow trout. Journal of Pain 4, 431-440. https://doi.org/10.1067/S1526-5900(03)00717-X
- Spence, R., Magurran, A.E., Smith, C., 2011. Spatial cognition in zebrafish: the role of strain and rearing environment. Animal Cognition 14, 607-612. https://doi.org/10.1007/s10071-011-0391-8
- Spruijt, B.M., van den Bos, R., Pijlman, F.T.A., 2001. A concept of welfare based on reward evaluating mechanisms in the brain: anticipatory behaviour as an indicator for the state of reward systems. Applied Animal Behaviour Science 72, 145-171. https://doi.org/10.1016/S0168-1591(00)00204-5
- Strand, D.A., Utne-Palm, A.C., Jakobsen, P.J., Braithwaite, V.A., Jensen, K.H., Salvanes, A.G.V., 2010. Enrichment promotes learning in fish. Marine Ecology Progress Series 412, 273-282. https://doi.org/10.3354/meps08682
- Suzuki, K., Mizusawa, K., Noble, C., Tabata, M., 2008. The growth, feed conversion ratio and fin damage of rainbow trout Oncorhynchus mykiss under self-feeding and hand-feeding regimes. Fisheries Science 74, 941-943. https://doi.org/10.1111/j.1444-2906.2008.01610.x
- Tarou, L.R., Bashaw, M.J., 2007. Maximizing the effectiveness of environmental enrichment: Suggestions from the experimental analysis of behavior. Applied Animal Behaviour Science 102, 189-204. https://doi.org/10.1016/j.applanim.2006.05.026
- Thomassen, J.M., Fjæra, S.O., 1991. Use of light signalling before feeding of salmon (Salmo salar). Aquacultural Engineering 10, 65-71. https://doi.org/10.1016/0144-8609(91)90011-8
- Tlusty, M.F., Andrew, J., Baldwin, K., Bradley, T.M., 2008. Acoustic conditioning for recall/recapture of escaped Atlantic salmon and rainbow trout. Aquaculture 274, 57-64. https://doi.org/10.1016/j.aquaculture.2007.11.007
- Torrezani, C.S., Pinho-Neto, C.F., Miyai, C.A., Sanches, F.H.C., Barreto, R.E., 2013. Structural enrichment reduces aggression in Tilapia rendalli. Marine and Freshwater Behaviour and Physiology 46, 183-190. https://doi.org/10.1080/10236244.2013.805053
- Tort, L., 2011. Stress and immune modulation in fish. Developmental and comparative immunology 35, 1366-1375. https://doi.org/10.1016/j.dci.2011.07.002
- Villarroel, M., de la Lama, G.C., Bermejo-Poza, R., Pérez, C., Chávarri, E.G.D., Torrent, F., De la Fuente, J., 2021. Effects of Randomly Fired Underwater Currents as an Occupational Enrichment Program in Rainbow Trout (Oncorhynchus mykiss). Water 13. https://doi.org/10.3390/w13213057
- Vindas, M.A., Johansen, I.B., Vela-Avitua, S., Norstrud, K.S., Aalgaard, M., Braastad, B.O., Hoglund, E., Overli, O., 2014. Frustrative reward omission increases aggressive behaviour of inferior fighters. Proceedings of the Royal Society B-Biological Sciences 281. https://doi.org/10.1098/rspb.2014.0300
- von Krogh, K., Sorensen, C., Nilsson, G.E., Overli, O., 2010. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiology & Behavior 101, 32-39. https://doi.org/10.1016/j.physbeh.2010.04.003
- Wafer, L.N., Jensen, V.B., Whitney, J.C., Gomez, T.H., et al. 2016. Effects of Environmental Enrichment on the Fertility and Fecundity of Zebrafish (Danio rerio). Journal of the American Association for Laboratory Animal Science : JAALAS 55, 291-294.
- Webster, M.M., Hart, P.J.B., 2004. Substrate discrimination and preference in foraging fish. Animal Behaviour 68, 1071-1077. https://doi.org/10.1016/j.anbehav.2004.04.003
- Wood-Gush, D.G.M., Vestergaard, K., 1989. Exploratory behavior and the welfare of intensively kept animals. Journal of Agricultural and Environmental Ethics 2, 161-169. https://doi.org/10.1007/BF01826929
- Woodward, M.A., Winder, L.A., Watt, P.J., 2019. Enrichment Increases Aggression in Zebrafish. Fishes, 22. https://doi.org/10.3390/fishes4010022
- Zhang, Z.H., Lin, W.H., Li, Y.Q., Yuan, X.Y., et al. 2023. Physical enrichment for improving welfare in fish aquaculture and fitness of stocking fish: A review of fundamentals, mechanisms and applications. Aquaculture 574. https://doi.org/10.1016/j.aquaculture.2023.739651
Pièces jointes
Pas de document complémentaire pour cet articleStatistiques de l'article
Vues: 66
Téléchargements
PDF: 10