Articles

Conserver les communautés microbiennes associées aux plantes viables et fonctionnelles : premiers résultats

Résumé

Les microbiotes qui vivent en association avec l’ensemble des êtres vivants présentent un important intérêt en agriculture, notamment pour l’amélioration de la santé des plantes. Cependant, leur manipulation demande à pouvoir préserver ces communautés vivantes et fonctionnelles. Préserver ces communautés de façon efficace n’est pas simple, celles-ci étant composées d’une très grande diversité de microorganismes que, pour beaucoup, nous ne savons cultiver. À la Collection Française des Bactéries associées aux Plantes, CIRM-CFBP, basée à INRAE Angers, nous avons mis en place le projet MICROSTORE, financé par le département Santé des Plantes et Environnement d’INRAE. L’objectif de ce projet, actuellement en cours, est de mesurer l’impact de la conservation de microbiotes associés aux feuilles et aux graines de radis ainsi que l’impact d’une étape d’amplification biologique après conservation.. Nous avons, avant et après conservation pendant deux ans, mesuré la composition taxonomique (par barcoding) et la diversité fonctionnelle (par technologie Biolog) pour chaque microbiote. L’analyse des données est en cours de finalisation, cependant, les données recueillies nous livrent déjà des informations précises sur l’effet de la conservation et sur l’effet d’une étape d’amplification biologique après conservation sur les microbiotes associés aux plantes. À terme, ces travaux devraient fournir aux scientifiques des outils pour mieux préserver ce type de ressources biologiques.

Références

  • Armanhi J.S.L., Souza R.S.C. de, Damasceno N. de B., Araújo L.M. de, Imperial J. and Arruda P (2017). A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. Front Plant Sci, 8, 2191.
  • Bai Y., Müller D. B., Srinivas G., Garrido-Oter R., Potthoff E., Rott M., Dombrowski N., Münch P.C., Spaepen S., Remus-Emsermann M., Hüttel B., McHardy A.C., Vorholt J.A. and Schulze-Lefert P. (2015). Functional overlap of the Arabidopsis leaf and root micro biota. Nature 2015 Vol. 528. Pages 364.
  • Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques MA (2015) Emergence shapes the structure of the seed-microbiota. Appl. Environ. Microbiol 81 (4) : 1257-1266
  • Barret M., Guimbaud J., Darrasse A. and Jacques M. (2016). Plant microbiota affects seed transmission of phytopathogenic mi croorganisms. Mol Plant Pathol, 17, 791–795.
  • Berg G., Rybakova D., Fischer D. et al. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8, 103.
  • Fouhy F, Deane J, Rea MC, O’Sullivan Ó, Ross RP, O’Callaghan G, Plant BJ, Stanton C. (2015). The Effects of Freezing on Faecal Microbiota as Determined Using MiSeq Sequencing and Culture-Based Investigations (J Neu, Ed.). PLOS ONE 10, e0119355.
  • Gaci N, Chaudhary PP, Tottey W, Alric M, Brugère J-F. (2017). Functional amplification and preservation of human gut microbiota. Microbial Ecology in Health and Disease 28, 1308070.
  • Ishizawa H., Tada M., Kuroda M., Inoue D., Futamata H. and Ike M. (2020). Synthetic Bacterial Community of Duckweed: A Simple and Stable System to Study Plantmicrobe Interactions. Microbes Environ, 35.
  • Kerckhof F-M, Courtens ENP, Geirnaert A et al. (2014). Optimized Cryopreservation of Mixed Microbial Communities for Conser ved Functionality and Diversity (K McCluskey, Ed.). PLoS ONE 9, e99517.
  • Kwak M.-J., Kong H.G., Choi K. et al. (2018). Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 36, 1100–1109.
  • Lau J.A. and Lennon J.T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. PNAS, 109, 14058–14062.
  • Lewis W.H., Tahon G., Geesink P., Sousa D.Z. and Ettema T.J.G. (2020). Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol.
  • Lopez-Velasco G., Carder P.A., Welbaum G.E. and Ponder M.A. (2013). Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett, 346, 146–154.
  • McLaren M.R. and Callahan B.J. (2020). Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190592.
  • Mendes R., Kruijt M., Bruijn I. de et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.
  • Mu¨ller D.B., Vogel C., Bai Y. and Vorholt J.A. (2016). The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet, 50, 211–234.
  • Niu B., Paulson J.N., Zheng X. and Kolter R. (2017). Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A, 114, E2450–E2459.
  • Pereira G.Q., Gomes L.A., Santos I.S., Alfieri A.F., Weese J.S. and Costa M.C. (2018). Fecal microbiota transplantation in puppies with canine parvovirus infection. J VetIntern Med, 32, 707–711.
  • Qiu Z., Egidi E., Liu H., Kaur S. and Singh B.K. (2019). New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances, 37, 107371.
  • Richaume A, Pourcelot A, Rama R, Nazaret S. (2006). Évaluation des modifications quantitatives, qualitatives et fonctionnelles induites par la conservation de consortiums bactériens extraits de sols., 19, Les Actes du BRG, 6, 371-389.
  • Santos-Medellin C., Edwards J., Liechty Z., Nguyen B. and Sundaresan V. (2017). Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. mBio, 8.
  • Sharma R., Nimonkar, Y., Sharma A., Rathore R.S. and Prakash O. (2018). Concept of Microbial Preservation: Past, Present and Future. In S. K. Sharma and A. Varma, eds. Microbial Resource Conservation: Conventional to Modern Approaches. Soil Biology. Cham: Springer International Publishing, pp. 35–54.
  • Sugiyama A, Bakker M.G., Badri D.V., Manter D.K., Vivanco J.M. (2013). Relationships between Arabidopsis genotype-specific bio mass accumulation and associated soil microbial communities. Botany 91: 123–12
  • Teixeira P.J.P., Colaianni N.R., Fitzpatrick C.R. and Dangl J.L. (2019). Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol, 49, 7–17.
  • Torres-Cortès G., Garcia B.J., Compant S. et al. (2019). Differences in resource use lead to coexistence of seed-transmitted mi crobial populations. Sci Rep, 9, 6648.
  • Wang J.-W., Kuo C.-H., Kuo F.-C. et al. (2019). Fecal microbiota transplantation: Review and update. J Formos Med Assoc, 118 Suppl 1, S23–S31.

Auteurs


Missimahou Oussou

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France


Géraldine Taghouti

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France


Steven Jagline

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France


Thomas Lerenard

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France


Audrey Lathus

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France


Cécile Dutrieux

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France


Perrine Portier

https://orcid.org/0000-0003-1033-6731

Affiliation : Université d’Angers, Institut Agro, INRAe, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France

Pays : France

Pièces jointes

Pas de document complémentaire pour cet article

Statistiques de l'article

Vues: 19

Téléchargements

PDF: 7