Articles
Evaluation of standard addition analysis for the multi elemental determination of complete meals by MP-AES: Investigation of matrix effects using the accuracy profile model
Published : 1 March 2024
Abstract
No analytical technique currently exists to assess mineral intakes in whole-meal samples to provide global information on diets. Moreover, multi-elemental determination by atomic emission spectrometers is often subject to matrix effects leading to analytical bias and inaccurate results. To overcome these issues, we have developed and optimized a method for the simultaneous determination of iron, zinc, calcium and magnesium in complex meal samples using the standard addition technique. The aim of this study was to appraise the suitability of this technique using the accuracy profile model. Systematic matrix effects were detected and correlated with the complexity of the sample. Bias correction significantly improved the analytical performance of the method. It appears to be more sensitive, with a decrease of the limit of quantification (LOQ) for all the elements studied. In addition, the overall validity range of the method has been extended, from 0.15 to 1.5 mg.L-1 for trace elements (Fe, Zn), and from 2.5 to 12 mg.L-1 for major elements (Ca, Mg). The method's reliability was assessed by modeling the uncertainty of the measurements. Within the validity range, the expanded uncertainty averages were 23% (Fe), 12% (Zn), 14% (Ca) and 8% (Mg). Addition concentration levels were therefore optimized for each element in their validity ranges, based on their discrimination thresholds. This work confirms the necessity of using standard addition as part of a multi-elemental assay on complete meals.
References
- Afnor (2007). Vocabulaire international de métrologie : Concepts fondamentaux et généraux et termes associés (VIM). ISO/CEI 99:2007. Afnor, 2007.
- Afnor (2010). Analyse des produits agricoles et alimentaires : Protocole de caractérisation en vue de la validation d’une méthode d’analyse quantitative par construction du profil d’exactitude. NF V03-110:2010. Afnor, 2010.
- Afnor (2014). Produits alimentaires. Dosage des éléments traces. Digestion sous pression. NF EN 13805. Afnor, 2014.
- Agilent (2021). How to choose the right atomic spectroscopy technique: To meet your lab’s needs both now and in the future. Agilent, 40. https://www.agilent.com/cs/library/primers/public/primer-atomic-spectroscopy-selection-5994-4048en-agilent.pdf?utm_source=LinkedIn&utm_medium=Social&utm_campaign=ATO_FY21_PFOLIO&utm_content=eBook1
- Andanson S., Delahaye Q., Ravel C. et al. (2019). De nouveaux critères de sélection des méthodes quantitatives d’analyse fondés sur l’incertitude de mesure : Application à une méthode HPLC d’analyse des catécholamines. Cahier des Techniques de l’INRA, 96 (3), 1-19.
- Korn M. D. G. A., da Boa Morte E. S., Batista Dos Santos D., et al. (2008). Sample preparation for the determination of metals in food samples using spectroanalytical methods: a review. Applied Spectroscopy Reviews, 43 (2), 67-92. https://doi.org/10.1080/05704920701723980
- Anses (2019). Actualisation des repères du PNNS : élaboration des références nutritionnelles. https://hal.science/anses-04314523v1
- Balaram V. (2020). Microwave plasma atomic emission spectrometry (MP-AES) and its applications: a critical review. Microchemical Journal, 159, 105483. https://doi.org/10.1016/j.microc.2020.105483
- Cutillas L., López-Fernández O., Domínguez R., et al. (2022). Mineral Profile. In : Lorenzo J. M., Domínguez R., Pateiro M., et al. (éd.). Methods to assess the quality of meat products. Humana, 2022, 73-83. https://doi.org/10.1007/978-1-0716-2002-1_7
- Danzer K., Currie L. A. (1998). Guidelines for calibration in analytical chemistry. Part I: Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70 (4), 993-1014. https://doi.org/10.1351/pac199870040993
- Ellison S. L. R., Thompson M. (2008). Standard additions: myth and reality. The Analyst, 133 (8), 992. https://doi.org/10.1039/b717660k
- Food and Drug Administration (FDA) (2019). Guidelines for the validation of chemical methods for the FDA foods program. FDA. https://www.fda.gov/media/81810/download
- Foster M., Chu A., Petocz P., et al. (2013). Effect of vegetarian diets on zinc status: a systematic review and meta-analysis of studies in humans: Zinc and vegetarian diets. Journal of the Science of Food and Agriculture, 93 (10), 2362-2371. https://doi.org/10.1002/jsfa.6179
- Huyez-Levrat M., Feinberg M., Laurentie M. (2010). Validation des méthodes d’analyse quantitative par le profil d’exactitude. Le cahier des techniques de l’INRA.
- Krejcová A., Cernohorský T., MeixneR D. (2007). Elemental analysis of instant soups and seasoning mixtures by ICP–OES. Food Chemistry, 105 (1), 242-247. https://doi.org/10.1016/j.foodchem.2006.11.005
- Loi n° 2018-938 (2018). Loi n° 2018-938 du 30 octobre 2018 pour l’équilibre des relations commerciales dans le secteur agricole et alimentaire et une alimentation saine, durable et accessible à tous (1). JORF n° 0253 du 1 novembre 2018. https://www. legifrance.gouv.fr/loda/id/JORFTEXT000037547946/ Loi n° 2021-1104 (2021).
- Loi no 2021-1104 du 22 août 2021 portant lutte contre le dérèglement climatique et renforcement de la résilience face à ses effets (1). JORF n° 0196 du 24 août 2021. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043956924
- Miketinas D., ChamPAGNE C. (2022). The vegetarian/flexitarian diets. In : Wilson T., Temple N. J., Bray G. A. (éd.), Nutrition guide for physicians and related healthcare professions. Humana, 2022, 181-191. https://doi.org/10.1007/978-3-030-82515-7_17
- Pelipasov O. V., Polyakova E. V. (2020). Matrix effects in atmospheric pressure nitrogen microwave induced plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 35 (7), 1389-1394. https://doi.org/10.1039/D0JA00065E
- Perignon M., Barré T., Gazan R., et al. (2018). The bioavailability of iron, zinc, protein and vitamin A is highly variable in French individual diets: Impact on nutrient inadequacy assessment and relation with the animal-to-plant ratio of diets. Food Chemistry, 238, 73-81. https://doi.org/10.1016/j.foodchem.2016.12.070
- Polyakova E. V., Nomerotskaya Y. N., Saprykin A. I. (2020). Effect of matrix element and acid on analytical signals in nitrogen microwave-plasma atomic emission spectrometry. Journal of Analytical Chemistry, 75 (4), 474-478. https://doi.org/10.1134/S1061934820040115
- Sewawa K., Mosekiemang T., Dintwe K., et al. (2023). Comparison of internal standard and standard additions calibration procedures for the determination of selected heavy metals in treated municipal effluent by MP-AES. Results in Chemistry, 5, 100907. https://doi.org/10.1016/j.rechem.2023.100907
- Thaler K. M., Schwartz A. J., Haisch C., et al. (2018). Preliminary survey of matrix effects in the Microwave-sustained, Inductively Coupled Atmospheric-pressure Plasma (MICAP). Talanta, 180, 25-31. https://doi.org/10.1016/j.talanta.2017.12.021
- Zhu Y., Chiba K. (2012). Internal standard method coupled with a gravimetric standard addition method for elemental measurements by ICP-MS. Journal of Analytical Atomic Spectrometry, 27 (6), 1000. https://doi.org/10.1039/C2JA30048F
Attachments
No supporting information for this articleArticle statistics
Views: 41