Articles

Development of an automated picture-taking system and an image analysis method for monitoring infection kinetics in a foliar pathogenic fungus

Abstract

To understand plant-pathogen interactions, we need efficient quantification of the traits associated with the infectious process. Among these traits, the latent period is of particular importance, yet, it is often poorly assessed because its measure relies on imprecise and over-infrequent visual observations. To overcome these limitations, we have developed an automated system for monitoring infection and lesion growth by taking zenith photographs under controlled conditions. An image analysis pipeline coded in ImageJ and R is used to identify lesions and estimate their growth. This method enables us to monitor each lesion individually and to quantify three characteristics linked to infectious potential: infection efficiency, lesion size and latency. This method was developed to monitor infections caused by a biotrophic fungus responsible for poplar rust, Melampsora larici-populina, on a miniaturized well-box device (simultaneous monitoring of 1536 samples). Our method can be easily adapted to a variety of situations, including the monitoring of fungal growth in Petri dishes.

References

  • Bock C.H., Parker P. E., Cook A.Z., et al. (2008). Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Disease, 92 (4), 530-541.
  • Bousset L., Palerme M., Leclerc M., et al. (2019). Automated image processing framework for analysis of the density of fruiting bodies of Leptosphaeria maculans on oilseed rape stems. Plant Pathology, 68 (9), 1749-1760.
  • ConTEXT Programmers Editor (2018). ConTEXT: control and automation by simple text.
  • Czedik-Eysenberg A., Seitner S., Guldener U., et al. (2018). The "PhenoBox", a flexible, automated, open-source plant phenotyping solution. New Phytologist, 219 (2), 808-823.
  • digiCamControl (2018). The free tethered shooting solution.
  • Divilov K., Wiesner-Hanks T., Barba P., et al. (2017). Computer vision for high-throughput quantitative phenotyping: A case study of grapevine downy mildew sporulation and leaf trichomes. Phytopathology, 107 (12), 1549-1555.
  • Fabre B., Bastien C., Husson C., Marçais B., Frey P., Halkett F. (2021). Un effet papillon dans les peupleraies françaises : les répercussions d’un contournement de résistance sur les méthodes de sélection variétale. In: Lannou C., Roby D., Ravigné V., Hannachi M., Moury B., Eds. L’immunité des plantes : Pour des cultures résistantes aux maladies. Editions Quae, Versailles, 329- 339. Réf. HAL: https://hal.inrae.fr/hal-03324138/document
  • Khiook I.L.K., Schneider C., Heloir M.C., et al. (2013). Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: Application to the evaluation of resistance to downy mildew. Journal of Microbiological Methods, 95 (2), 235-244.
  • Maupetit A., Larbat R., Pernaci M., et al. (2018). Defense compounds rather than nutrient availability shape aggressiveness trait variation along a leaf maturity gradient in a biotrophic plant pathogen. Frontiers in Plant Science, 9, 1396.
  • Maupetit A., Fabre B., Pétrowski J., et al. (2021). Evolution of morphological but not aggressiveness-related traits following a major resistance breakdown in the poplar rust fungus, Melampsora larici-populina. Evolutionary Applications, 14 (2), 513-523.
  • Pariaud B., Ravigne V., Halkett F., et al. (2009). Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology, 58 (3), 409-424.
  • Perez G., Burte V., Baron O., (2017) Une méthode d’analyse d’image automatique pour quantifier rapidement les nombres d’œufs et les taux de parasitisme chez Trichogramma sp. Cahier des Techniques de l’INRA, numéro spécial, 135-142.
  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
  • Rueden C., Dietz C., Horn M. et al. (2016). ImageJ Ops. https://imagej.net/libs/imagej-ops/
  • Shaner G. (1980). Probits for analyzing latent period data in studies of slow rusting resistance. Phtytopathology, 70, 1179-1182.
  • Schindelin J., Arganda-Carreras I., Frise E. et al. (2012). Fiji: an open source platform for biological-image analysis. Nature Methods, 9 (7), 676-682.
  • Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9 (7), 671-675

Authors


Bénédicte Fabre

benedicte.fabre@inrae.fr

Affiliation : Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, F-54280 Champenoux, France

Country : France


Pierre Santerre Filleux D'Arrentiere

Affiliation : Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, F-54280 Champenoux, France

Country : France


Christophe Bailly

Affiliation : Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, F-54280 Champenoux, France

Country : France


Jérôme Demaison

Affiliation : INRAE, UR Biogéochimie des écosystèmes forestiers, F-54280 Champenoux, France

Country : France


Jérémy Petrowski

Affiliation : Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, F-54280 Champenoux, France

Country : France


Fabien Halkett

https://orcid.org/0000-0001-8856-0501

Affiliation : Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, F-54280 Champenoux, France

Country : France

Attachments

No supporting information for this article

Article statistics

Views: 25