Articles

Determining cellular and subcellular volumes by analyzing microscope images: How can the speed of fruit cell growth be estimated?

Abstract

The estimation of cell volumes and subcellular proportions is necessary for studying metabolic fluxes in fruit during its development. By analyzing optical microscopy images using the freeware "Image J", we were able to collect the data needed to parameterize a fruit cell model described as ellipsoidal in shape. The volume estimates obtained for different stages of fruit development enabled us to obtain growth kinetics for the average cell and its major compartments. By fitting the measured data to an appropriate mathematical function, we were able to calculate cell growth rate over time

References

  • Beauvoit B., Colombié S., Monier A., et al. (2014) Model-assisted analysis of sugar metabolism throughout tomato fruit develop ment reveals enzyme and carrier properties in relation to vacuole expansion. The Plant Cell, 26 (8), 3224-3242.
  • Biais B., Bénard C., Beauvoit B., et al. (2014). Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiology, 164 (3), 1204-1221.
  • Chen J., Beauvoit B., Génard M., et al. (2021). Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fine-tuned during fruit development. New Phytologist, 230 (4), 1489-1502.
  • Cheniclet C., Rong W.Y., Causse M., et al. (2005). Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiology, 139 (4), 1984-1994.
  • Decros G., Dussarrat T., Baldet P., et al. (2023). Enzyme-based kinetic modelling of ASC–GSH cycle during tomato fruit develop ment reveals the importance of reducing power and ROS availability. New Phytologist, 240 (1), 242-257.
  • Desnoues E., Génard M., Quilot-Turion B., et al. (2018). A kinetic model of sugar metabolism in peach fruit reveals a functional hypothesis of markedly low fructose-to-glucose ratio phenotype. Plant Journal, 94 (4), 685-698.
  • Destailleur A., Poucet T., Cabasson C., et al. (2021). The evolution of leaf function during development is reflected in profound changes in the metabolic composition of the vacuole. Metabolites, 11 (12), 848-865.
  • Génard M., Baldazzi V., Gibon Y. (2014). Metabolic studies in plant organs: don’t forget dilution by growth. Frontiers in Plant Science, 5 (85), 1-5.
  • Poucet T., Beauvoit B., González-Moro M.-B., et al. (2022). Impaired cell growth under ammonium stress explained by modelling the energy cost of vacuole expansion in tomato leaves. Plant Journal, 112 (4), 1014-1028.
  • Roch L. (2018). Étude intégrative et comparative du métabolisme primaire des fruits au cours de leur développement, thèse de doctorat, Bordeaux.
  • Shinozaki Y., Beauvoit B., Takahara M., et al. (2020). Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 117 (38), 23970-23981
  • Fonction logistique (Verhulst). Contenu soumis à la licence CC-BY-SA 4.0. Source : Wikipédia en français https://fr.wikipedia.org/wiki/Fonction_logistique_(Verhulst)
  • Modèle de Gompertz : https://www.techno-science.net/glossaire-definition/Modele-de-Gompertz-page-2.html
  • Racine de l’erreur quadratique moyenne : https://arize.com/blog-course/root-mean-square-error-rmse-what-you-need-to-know/
  • Delbot A. (2023-11-22). Le secret de la croissance des plantes. France Culture, 2023-11-22. https://www.radiofrance.fr/franceculture/podcasts/avec-sciences/le-secret-de-la-croissance-des-plantes-6140688
  • FRIM (Fruit Integrative modelling). https://www.era-learn.eu/network-information/networks/erasysbio-1/erasysbio-2008-01/fruit-integrative-modelling
  • Fruit Integrative Modelling for a Unified Selection System (FRIMOUSS). (2016-2019). Appel à projets générique ANR 2015 GLOMICAVE. https://glomicave.eu/fruit-growth-and-quality-management/

Authors


Marie-Hélène Andrieu

marie-helene.andrieu@inrae.fr

https://orcid.org/0000-0001-9616-3426

Affiliation : INRAE, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d'Ornon Cedex, France.

Country : France


Catherine Cheniclet

Affiliation : Bordeaux Imaging Center, UMS 3420 (CNRS, INSERM, Université de Bordeaux), Pôle Végétal, F33000 Bordeaux, France

Country : France


Martine Dieuaide-Noubhani

https://orcid.org/0000-0002-9842-9969

Affiliation : INRAE, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d'Ornon Cedex, France

Country : France


Bertrand Beauvoit

https://orcid.org/0000-0002-7666-6429

Affiliation : INRAE, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d'Ornon Cedex, France

Country : France


Yves Gibon

https://orcid.org/0000-0001-8161-1089

Affiliation : INRAE, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d'Ornon Cedex, France

Country : France

Attachments

No supporting information for this article

Article statistics

Views: 45