Articles
ELONCAM, a new instrument for automated and individualized monitoring of seedling development
Published : 1 September 2023
Abstract
Seed germination and seedling growth are essential steps for field emergence. Speed, germination homogeneity and growth are therefore important parameters to assess seed vigor or to characterize genetic diversity under various seeding conditions. The ELONCAM vision system is aimed at contributing to the automated phenotyping of seeds and seedlings. It allows determining germination capacity and growth rate of different genotypes to evaluate their physiological traits in a wide range of conditions. It is an imaging system consisting of two cameras placed one above the other and fixed on a sliding arm in a climatic chamber. The cameras move on an automated rail connected to the computer-controlled image acquisition system. The acquisition of seedling images during the heterotrophic growth phase is done under green light. After image acquisition, image processing is performed to obtain the germination time for each seed and the growth kinetics of the aerial and root parts of the seedlings studied.
References
- 1. Benoit L., Imagerie multimodalité appliquée au phénotypage haut-débit des semences et plantules. Thèse de doctorat, École doctorale Sciences et technologies de l'information et mathématiques, 2015 a, Nantes, France.
- 2. Benoit L., Belin E., Dürr C., Chapeau-Blondeau F., Demilly D., Ducournau S., Rousseau D. Computer vision under inactinic light for hypocotyl–radicle separation with a generic gravitropism-based criterion., Computers and Electronics in Agriculture 111 (2015 b) 12–17.
- 3. Benoit L., Rousseau D., Demilly D., Vadaine R., Dürr C. ELONCAM Instrumentation et analyse d'images pour le suivi automa tisé individualisé du développement de semences et de plantules. Les Rencontres du Végétal 8ème édition, 2015 c, Angers, France.
- 4. Demilly D., Ducournau S., Wagner M.-H., Dürr C. Digital imaging of seed germination; Chap. 7, p 147-162. in S. Dutta Gupta, Y. Ibaraki, eds., Plant Image Analysis: Fundamentals and Applications, CRC Press 2014.
- 5. Ducournau S., Charrier A., Demilly D., Wagner M-H., Trigui G., Dupont A., Hamdy S., Boudehri-Giresse K., Le Corre L., Landais L., Delanoue A., Charruau A., Henry K., Henry N., Ledroit L., Dürr C. High throughput phenotyping dataset related to seed and seedling traits of sugar beet genotypes. Data in Brief Volume 29, April 2020, 105201.
- 6. Huyghe C., Desprez B., Laudinat V., Guillaume D. La betterave sucrière : L'innovation compétitive / Sugar beet: A competitive innovation - 2020
- 7. Delanoue A., Dupont A., Wagner M-H., Demilly D. and Ducournau S., ISTA 2022 poster session B: "Seedling growth dynamic assessment using image analysis".