CIPANHUB: an interoperable multi-agent web service dedicated to the experimental monitoring of cover crops during intercropping periods
Abstract
Cover crops are an effective tool for reducing nitrogen leaching in agrosystems, and their bio-degradation after destruction provides nitrogen for the following crop, though in highly variable amounts depending on their biomass and the nitrogen they have absorbed. Remote sensing data from Sentinel-2 satellites show great potential for addressing this variability through the development of predictive models based on vegetation indices and parameterised using field measurements of variables of agronomic interest. Doing so requires implementing a short-term but large-scale experimental project on many fields, using a team of data collectors. The experimental protocol for this project is simple in theory, but requires collecting many measurements and metadata. Thus, a web portal was created to make it easier for the data collectors to learn the protocol, simplify the collection of data and metadata, and manage the progress of the project. We developed the portal, called CIPANHUB, using interoperable cartographic distribution protocols (WMS, WFS) and the Flask framework developed in Python, because it is light and easy to use. The data are stored in a PostgreSQL database with the PostGis extension for geography. The portal was developed to follow the path of the data, from the creation of the field to the entry of the results, without preventing users from completing a given step if they do not have all the necessary information. A specific application was created to ensure the reliability of location data using a smartphone. The performance and use of the CIPANHUB portal during the 2 campaigns has been very successful: the service continuity has been close to 100%, and the feedback from users has also been very positive. In conclusion, this open-source web application dedicated to collecting information on networks of fields could easily be adapted to other experimental contexts, particularly in the context of participative science.
References
- Justes E, Beaudoin N, Bertuzzi P, Charles R, Constantin J, Dürr C, et al. (2012). Réduire les fuites de nitrate au moyen de cultures intermédiaires : conséquences sur les bilans d’eau et d’azote, autres services écosystémiques. Synthèse du rapport d'étude, INRA (France), 60 p.
- Comifer (2013). Calcul de la fertilisation azotée : Guide méthodologique pour l'établissement des prescriptions locales. Cultures annuelles et prairies. Paris La Défense Cedex, France, Comifer ; 159 p.
- Minette S (2019). MERCI (Méthode d’Estimation des Restitutions par les Cultures Intermédiaires) - Acquis et perspectives. Colloque Comifer, Dijon, 20-21 novembre 2019.
- Constantin J, Minette S, Vericel G, Jordan-Meille L, Justes E (2019). MERCI: a simple method and decision-support tool to estimate availability of nitrogen from a wide range of cover crops to the next cash crop. Plant and Soil, disponible sur : https://doi.org/10.1007/s11104-023-06283-1
- Verrelst J, Rivera JP, Veroustraete F, Muñoz-Marí J, G.P.W. Clevers J, Camps-Valls G, Moreno J (2015). Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260-272.
- Dusseux P, Guyet T, Pattier P, Barbier V, Nicolas H (2022). Monitoring of grassland productivity using Sentinel-2 remote sensing
- data. International Journal of Applied Earth Observation and Geoinformation, Volume 111. https://doi.org/10.1016/j.jag.2022.102843
- Dusseux P, Michel E, Airiaud A, Guyet T, Nicolas H, Pattier P (2021). Utilisation des données satel-lites Sentinel-2 pour quantifier la production d’herbe et de biomasse. Journées AFPF, 24-25 mars 2021.
- AFNOR, NF ISO 13878. Détermination de la teneur totale en azote par combustion sèche (“analyse élémentaire”). Qualité du sol. 1998.
- Bera, R., Squividant, H., Le Henaff, G., Pichelin, P., Ruiz, L., Launay, J., Vanhouteghem, J., Aurous-seau, P., and Cudennec, C (2015). GéoSAS : A modular and interoperable Open Source Spatial Data Infrastructure for research, Proc. IAHS, 368, 9-14, https://doi.org/10.5194/piahs-368-9-2015
- Meroni M, d'Andrimont R, Vrieling A, Fasbender D, Lemoine G, Rembold F, Seguini L., Verhegghen A. (2015). Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2, Remote Sensing of Environment, Volume 253, 2021, 112232, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2020.112232
Attachments
No supporting information for this articleArticle statistics
Views: 69