Development of image-based chicken detection algorithms for monitoring farm activity indicators
Abstract
Guaranteeing consumers that broilers are produced in a way that respects animal welfare is the basis of the farming profession, but civil society is calling for greater transparency in farming practices. Farm welfare assessment methods are carried out punctually and require time and the presence of a trained observer. Image analysis, on the other hand, enables continuous, real-time measurements to be taken without disturbing the animals. The aim of this article is to evaluate the performance of a broiler detection algorithm based on image analysis and using artificial intelligence to quantify individual animal mobility. The majority of the images used to train the model, as well as the test database, reflect the commercial densities used in broiler farming. They are also representative of the different physiological stages of the broilers. The model achieves a detection rate of 80% across all ages. However, the sensitivity of the algorithms increases with the age, rising from 66% for 0-day-old broilers to 90% for 40-day-old broilers. As it stands, broiler detection is strongly linked to the number of pixels defining the animal. This detection model is the first step needed to carry out individual tracking over time and therefore over several successive images. The quality of this tracking is highly dependent on the system ability to detect the animals correctly, but also on their activity. Tracking performance is not discussed in this article. In view of the promising results, the data generated will be used to assess broiler welfare indicators and detect health problems early on in commercial broiler farms and could also be used in experimental farms.
References
- Bignon L., Mika A., Mindus C., Litt J., Souchet C., Bonnaud V., Picchiottino C., Warin L., Bouvarel I. (2017). Une méthode pratique et partagée d’évaluation du bien-être en filières avicole et cunicole : EBENE. 12e Journées de la Recherche Avicole et Palmipèdes à Foie Gras, Tours, 05 et 06 avril 2017
- Colles F.M., Cain R.J., Nickson T., Smith A.L., Roberts S.J., Maiden M.C., Lunn D., Dawkins M.C. (2016). Monitoring Chicken Flock Behaviour Provides Early Warning of Infection by Human Pathogen Campylobacter. Proceedings. Biological Sciences 283 (1822): 20152323. https://doi.org/10.1098/rspb.2015.2323
- Collins L. (2008). Non-intrusive tracking of commercial broiler chickens in situ at different stocking densities. Applied Animal Behaviour Science. volume 112. Issues 1-2, p 94-105. https://doi.org/10.1016/j.applanim.2007.08.009
- Créach P., Travel A., Bouvarel I. (2019). L’image et le son pour automatiser le relevé d’indicateurs de bien-être et de santé des volailles. Revue TeMa n°51. https://hal.inrae.fr/hal-04617675v1
- Dawkins M. S., Roberts S. J., Cain R. J., Nickson T., Donnelly C. A. (2017). Early Warning of Footpad Dermatitis and Hockburn in Broiler Chicken Flocks Using Optical Flow, Bodyweight and Water Consumption. The Veterinary Record 180 (20):499. https://doi.org/10.1136/vr.104066
- Dawkins, M.S., Wang L., Ellwood S. A., Roberts S. J., et Gebhardt-Henrich S. (2021). Optical Flow, Behaviour and Broiler Chicken Welfare in the UK and Switzerland. Applied Animal Behaviour Science 234 (janvier):105180. https://doi.org/10.1016/j.applanim.2020.105180
- De Montis A., Pinna A., Barra M. et Vranken E. (2013). Analysis of poultry eating and drinking behavior by eYeNamic. Journal of agricultural engineering ; volume XLIV (s2):e33. https://doi.org/10.4081/jae.2013.275
- Fernández P, Norton AT, Tullo E, van Hertem T, Youssef A, Exadaktylos V, Vranken E, Guarino M, et Berckmans D. (2018). Real-Time Monitoring of Broiler Flock’s Welfare Status Using Camera-Based Technology. Biosystems Engineering, Advances in the Engineering of Sensor-based Monitoring and Management Systems for Precision Livestock Farming, 173 (septembre):103‑14. https://doi.org/10.1016/j.biosystemseng.2018.05.008
- Fraess G. A., Bench C. J., Tierney K. B. (2016). Automated Behavioural Response Assessment to a Feeding Event in Two Heritage Chicken Breeds. Applied Animal Behaviour Science 179 (juin):74‑81. https://doi.org/10.1016/j.applanim.2016.03.002
- Li N., Ren Z., Li D., et Zeng L. (2020). Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming. Animal 14 (3):617‑25. https://doi.org/10.1017/S1751731119002155
- O’Mahony N., Campbell S., Carvalho A., Harapanahalli S., Hernandez G. V., Krpalkova L., ... & Walsh J. (2019, April). Deep learning vs. traditional computer vision. In Science and Information Conference (pp. 128-144). Springer, Cham. 10.1007/978-3-030-17795-9_10
- Oliveira J. L., Xin H., Wu H. (2019). Impact of Feeder Space on Laying Hen Feeding Behavior and Production Performance in Enriched Colony Housing. Animal 13 (2):374‑83. https://doi.org/10.1017/S1751731118001106
- Rowe E., Dawkins M., Gebhardt-Henrich S. (2019). A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare?, Animals 2019, 9, 614. https://doi.org/10.3390/ani9090614
- Sales, G. T., Green A. R., Gates R. S., Brown-Brandl T. M., et Eigenberg R. A. (2015). Quantifying Detection Performance of a Passive Low-Frequency RFID System in an Environmental Preference Chamber for Laying Hens. Computers and Electronics in Agriculture 114 (juin):261‑68. https://doi.org/10.1016/j.compag.2015.03.008
- Siegford J. M., Berezowski J., Biswas S. K., Daigle Courtney L., Gebhardt-Henrich S. G., Hernandez C. E., Thurner S., et Toscano M. J. (2016). Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology. Animals 6 (2):10. https://doi.org/10.3390/ani6020010
- Silvera A. M., Knowles T. G., Butterworth A., Berckmans D., Vranken E., Blokhuis H. J. (2017). Lameness Assessment with Automatic Monitoring of Activity in Commercial Broiler Flocks. Poultry Science 96 (7):2013‑17. https://doi.org/10.3382/ps/pex023
- Zhang F. Y., Hu Y. M., Chen L. C., Guo L. H., Duan W. J., Wang L. (2016). Monitoring Behavior of Poultry Based on RFID Radio Frequency Network. International Journal of Agricultural and Biological Engineering 9(6):139‑47. https://doi.org/10.3965/j.ijabe.20160906.1568
Attachments
No supporting information for this articleArticle statistics
Views: 68